
OPTIMAL PARALLEL CONSTRUCTION OF

PRESCRIBED TOURNAMENTS

* Danny Soroker

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

A tournament is a digraph in which every pair of vertices is connected

by exactly one arc. The score list of a tournament is the sorted list of

the out-degrees of its vertices. Given a non-decreasing sequence of non

negative integers, is it the score list of some tournament? There is a

simple test for answering this question. There is also a simple sequen

tial algorithm for constructing a tournament with a given score list.

However, this algorithm has a greedy nature, and seems hard to paral

lelize. We present a simple parallel algorithm for the construction

problem. Our algorithm runs in time O(logn) and uses 0(n 2/logn) pro

cessors on a CREW PRAM, where n is the number of vertices. Since

the size of the output is 8(n 2), our algorithm achieves optimal speedup.

* Research supported by Defense Advanced Research Projects Agency IDoDl Arpa

Order No. 4871, Monitored by Space & Naval Warfare Systems Command under

Contract No. N00039-84-C-0089 and by the International Computer Science Insti

tute, Berkeley, California

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Optimal Parallel Construction of Prescribed Tournaments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical Engineering
and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
http://www.eecs.berkeley.edu/Pubs/TechRpts/1987/CSD-87-371.pdf A tournament is a digraph in which
every pair of vertices is connected by exactly one arc. The score list of a tournament is the sorted list of the
out-degrees of its vertices. Given a non-decreasing sequence of non-negative integers, is it the score list of
some tournament? There is a simple test for answering this question. There is also a simple sequential
algorithm for constructing a tournament with a given score list. However, this algorithm has a greedy
nature, and seems hard to parallelize. We present a simple parallel algorithm for the construction
problems. Our algorithm runs in time O(log n) and uses O(n^2/logn) processors on a CREW PRAM,
where n is the number of vertices. Since the size of the output is Omega(n^2), our algorithm achieves
optimal speedup.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report
(SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2 -

1. Introduction

A tournament is a directed graph in which there is exactly one arc between

every pair of vertices. This models a competition involving n players, where every

player competes against every other one. If an arc is directed from x to y we say

that x dominates y. The transitive tournament on n vertices is the tournament in

which each integer between 1 and n has a corresponding vertex, and i dominates j

if i > j. The score of a vertex is the number of vertices it dominates. The score list

of a tournament is the sorted list of scores of its vertices (starting with the lowest).

Tournaments are widely studied in the literature (e.g. [BW],[M]). In this

paper we deal with the following problem: given a non-decreasing list of integers,

s= s v ... , sn, determine if there exists a tournament with score list S, and if so,

construct such a tournament.

A simple, non-constructive criterion for testing if such a list is a score list was

found by Landau in 1953 ([BW]): sis a score list of some tournament if and only

if, for all k, 1 ~ k ~ n:

with equality fork= n.

A simple greedy algorithm ([BW,CL]) is known for constructing a tournament

with vi having score si (for all 1 ~ i ~ n): select some score si and remove it from

the list; have vi dominate the si vertices with smallest scores (and have the rest of

the vertices dominate vi); subtract 1 from the score of each vertex dominating vi

and repeat this procedure for the reduced list. We note that very similar algo

rithms exist for several other construction problems ([B],[CL],[FF]).

The main result of this paper is an NC algorithm for the construction prob

lem. Our algorithm runs in time O(logn) and uses 0(n 2/logn) processors on a con

current read - exclusive write (CREW) PRAM, where n is the number of vertices.

Since the size of the output is 8(n 2), our algorithm achieves optimal speedup. See

e.g. [V] for a discussion of parallel algorithms and optimal speedup.

In section 2 we describe our approach, which is based on looking at arcs that

go from vertices of lower score to vertices of higher score.

In section 3 we derive a high-level description of the parallel algorithm.

Section 4 contains a detailed description of an implementation of the algo

rithms that achieves optimal speedup.

- 3 -

2. The Upset Sequence

Our approach is based on, what we call, the upset sequence of a tournament,

T, which describes the difference between T and a transitive tournament. If we

list the vertices according to their scores in non-decreasing order, then an upset is

when a vertex, v, dominates some other vertex appearing later than v in the list.

We call an arc corresponding to an upset a reverse arc. Transitive tournaments are

exactly those tournaments that contain no upsets.

Definition: Let s 1 ::s; • · • ::s; sn be the score list of a tournament, T, and let vi be the

vertex of score si (for all 1 :5 i :5 n). The upset sequence of T, is the sequence, fl,

where uk is the number of upsets between {v 1, ... ,vJ and {vk+ 1, ..• ,v,J (for all

1sksn-1).

The score list uniquely determines the upset sequence (and vice-versa):

Lemma 2.1: Let T be a tournament with score list sand upset sequence fl. Then,

for all Osk sn -1:

Proof: There are exactly (;] arcs in the subgraph induced on {v 1, ... , vJ, since it

is also a tournament. Therefore the right hand side describes the number of arcs

whose tail is in {v 1, ... , vJ, but whose head isn't. 0

Corollary 2.1: For all 1 Sk s n:

sk = uk-uk_ 1+k-1

How can we use the upset sequence? Our approach is to construct a tourna

ment with a given score list by starting with a transitive tournament and revers

ing some of its arcs. The upset sequence of the desired tournament gives us a han

dle on which arcs to reverse. We will be aided by a graphical representation of the

upset sequence, which we now discuss.

A sequence of non-negative integers can be represented graphically by its his

togram. We will treat the histogram as a rectilinear polygon (and call it, simply, a

polygon), which is divided into squares, each of which has integral x and y coordi

nates. The x coordinate is a square's column and they coordinate is its height. An

example of a polygon is shown in fig. 2.1. Any collection of squares of a polygon is

a sub- polygon. A maximal set of consecutive squares at the same height is called

a slice. Note that a polygon can have several slices at the same height (if it is not

convex). A (horizontal) segment is consecutive set of squares, all in the same slice.

We denote a segment or slice by [l,r] or by [l,r;h], where l and r are, respectively,

the columns of the leftmost and rightmost squares it contains, and h is its height.

A polygon representing the upset sequence of a tournament will be called an

upset polygon.

- 4 -

I
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2.1: A polygon representing the sequence 1,4.4,6.6,3,3,7,7,7,7,4,3,3.

An elementary property of a polygon, which follows from its definition is:

Proposition 2.1: The slices of a polygon form a nested structure: if [l 1,rd and

(l 2,r2] are slices with l 1 <:!l 2 then either l 1 >r2 or r 1 =5r 2.

We define the following partitioning problem: Given a rectilinear polygon as

shown in fig. 2.1, partition each of its slices into segments such that no two seg

ments in the partition agree on both endpoints. Such a partition is said to be

valid, and is defined by the set of segments it contains. An example of a valid par

tition is illustrated in fig. 2.2. The partition is {[1,14], [2,4], [2,5], [2,14], [4,4],

[4,5], [5,5], [5,14], [8,8], [8,9], [8,10], [8,11], [9,11], [10,11], [11,12]}.

I
J 1

I I

I
I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2.2: A valid partition of the polygon of fig. 2.1.

Lemma 2.2: A valid partition of the upset polygon yields a solution to the con

struction problem.

- 5 -

Proof: Let {tli,rd I 1 sis m} be the set of segments in a valid partition of an upset

polygon representing a sequence u corresponding to the score list s = s 1, ... ,sn.

Let T be the tournament obtained by taking the n vertex transitive tournament

and reversing the arcs {(ri,li) I 1 sis m}. By inspection, the number of reverse

arcs crossing the cut ({v 1, ... ,vk}:{vk+l> . .. ,vnJ) is exactly uk· Therefore (by corol

lary 2.1), T is a tournament with score listS. []

Note that each slice in fig. 2.2 is partitioned into at most two segments. This is not

a coincidence.

Definition: A 2- partition is a valid partition in which every slice is parti

tioned into at most 2 segments. A slice which is partitioned into at most 2 seg

ments is 2- partitioned.

We will deal only with 2-partitions because of the following:

Lemma 2.3: If a polygon has a valid partition, then it has a 2-partition.

Proof: Let P be a valid partition of some polygon, which is not a 2-partition. Let S

be a slice which is partitioned into more than 2 segments such that all slices lying

above S are 2-partitioned. We will prove the lemma by showing how to transform

P into another valid partition in which S is 2-partitioned and the partition of

slices above S is unchanged.

Let the segments comprising S in P be, from left to right, [l 1,rtJ, ... ,[lk,rk]

(where k > 2). If either [l 1 ,rk _ t1 or [l 2,rk] does not appear in P, then the partition

of S can be replaced with {tl 1,rk_tJ,[lk,rk]j or {tl 1,rtJ,[l2,rk]j respectively. If both

appear, then at least one, say [l 1,rk _1], must appear in a slice below S (call this

slice T). This follows from the assumption that all slices lying above S are 2-

partitioned and from the nesting property (proposition 2.1). Now, simply assign

the segment [l 1,rk-d to S and the segments [l 1,rtJ, ... ,[lk,rk] toT. []

Not every rectilinear polygon of the type discussed has a valid partition. Two

examples are shown in fig 2.3.

- 6 -

-

1 2 1 2 3 4 5 6 7

(1) (2)

Fig. 2.3: Examples of polygons which have no valid partition.

We will show, however, that every upset polygon has a 2-partition. A few more

definitions are required for this; a left (right) [ace is a maximal vertical line seg

ment on the left (right) part of the boundary of a polygon. Face k, if it exists, is

the face between columns k -1 and k. Two faces, L and R, are opposing if there is

some slice starting at L and ending at R. The width, w(F) of a face, F, is the

minimum distance between it and any of its opposing faces (where distance is

measured by number of squares). The length of a face F (i.e the number of slices it

touches) is denoted by l(F).

Lemma 2.4: A polygon, D, has a 2-partition if the length of every face of D is no

more than half its width.

Proof: We prove the lemma by induction on the height of D. If the height is 1

then D clearly has a 2-partition. Assume the claim holds for all polygons of height

k -1, and let k be the height of D. Let D' be the polygon obtained by removing the

bottom slice from D. By the inductive assumption, D' has a 2-partition, P. We will

show that P can be extended to a 2-partition of D. Let L and R be, respectively,

the left and right faces bounding the bottom level of D. P contains l (L) -1 seg

ments starting at L and l(R) -1 ~e!!ments ending at R. By the condition of the

lemma,

width of bottom slice~ w(L), w(R) ~ l(L)+l(R)

Therefore, by the pigeonhole principle, there are two segments that partition the

bottom slice, which are not contained in P. Thus P can be extended to become a

2-partition of D. []

Lemma 2.5: In an upset polygon the length of every face is no more than half its

width.

- 7 -

Proof: Let ~(k) be the difference in height between the highest square with x

coordinate k and the highest square with x-coordinate k -1. In other words, ifF is

a left face bounding squares with x-coordinate k, then ~(k) = l(F). IfF is a right

face then ~(k)=-l(F). Using corollary 2.1:

~(k) = uk-uk-l = sk-k+1

Since sis non-decreasing, it follows that:

(*) for all 2 s k s n - 1 ~(k) ~ ~(k -1) -1

Say face k is a left face, L. The nearest opposing face of L occurs to the right of

the first value, r, such that r > k and ~k + 1 + ~k + 2 + · · · + ~r < 0. The smallest

possible r value can occur (by (*)) when ~k = ~k + 1 + 1 = · · · = ~r + r- k. In this

case:

w(L) = r-k+1 = 2~(k) = 2l(L)

A symmetric argument works for right faces. []

Theorem 2.1: Every upset polygon has a 2-partition.

3. 2-Partitioning the Upset Polygon

As described in the previous section, our algorithm works as follows: given the

score list, S, we compute its corresponding upset sequence u and construct a 2-

partition, P, of the upset polygon. In the output tournament, for all 1 s i <j s n, vi

dominates vi if and only if [ij] E P.

What remains to be shown is how to compute a 2-partition of an upset

polygon, U, efficiently in parallel. Basically, our approach is to construct the parti

tion according to faces. We first observe that it is a simple task to partition a set

of slices with a common face as follows: say the common face is a left face. Let the

set of slices be, from top to bottom, S 1, ... ,S m• where Si = [l ,rj] for all 1 sis m.

Then Si will be partitioned into the segments [l,l+i] and [l+i+1,rJ This is

shown in fig. 3.1. Such a partition is always possible given lemma 2.5. A sym

metric partition exists for slices sharing a right face.

- 8 -

I I
I

I
l

I
1

I
l

Fig. 3.1: 2-partitioning a set of slices with a common left face.

If we simultaneously partition the entire polygon in the manner described (accord

ing to left faces), the resulting partition might not be valid, since a right face can

be opposite several left faces. Our solution is to have every slice "belong" to one of

(the two) faces it touches, and to be partitioned accordingly. More specifically, it

belongs to the dominant face according a domination relationship defined as fol

lows: a left face, L, dominates an opposing right face, R, unless the top slice touch

ing L touches R but the top slice touching R does not touch L (in other words, R

is the highest face opposing L but not vice-versa).

Theorem 3.1: Let S =[l,r,h] be a slice belonging to face F. Let SF=[l' ,r' ,h'] be

the highest slice belonging to F. Say we partition S into 2 segments such that the

length of the segment touching F is h' - h + 1. If we perform this partitioning for

all the slices of an upset polygon, U, then the result is a (valid) 2-partition of U.

Proof: First we note that if two slices belong to the same face, they must be of

different height, so their partition cannot conflict (i.e. create segments with identi

cal endpoints). Therefore, the only conceivable way in which a conflict can occur is

from partitioning two slices, S 1 and S 2, that belong to faces L 1 and R 2 respec

tively, where L 1 and R 2 are left and right faces. Furthermore, L 1 and R 2 must be

opposing faces because of the nesting property (proposition 2.1).

We note that the set of slices belonging to some face is consecutive. Say £ 1

dominates R 2 (the other case is symmetrical). Then the right endpoint of a seg

ment created from a slice belonging to L 1 is at distance at most l(L 1) from L 1 and

the left endpoint of a segment created from a slice belonging to R 2 is at distance at

most l(R 2)-1 from R 2• Now we apply lemma 2.5: the distance between L 1 and R 2

is at least l(L 1)+l(R 2). Therefore all right endpoints of segments created from

slices belonging to L 1 are less than all left endpoints of segments created from

slices belonging toR 2, so no conflict can occur. []

- 9 -

4. Implementation Details

We now describe in detail a parallel implementation of the tournament con

struction algorithm described above. Our algorithm works in time 0 (logn) and

uses 0(n 2/logn) processors on a concurrent read- exclusive write (CREW) PRAM,

where n is the number of vertices in the tournament. Our parallel algorithm is

optimal, since the size of the output is 8(n 2). Some of the procedures will be

easier to describe as using 0 (n 2) processors and working in constant time. Each

such procedure can clearly be slowed down to work in time O(logn) using only

0(n 2/logn) processors.

Let U be the upset polygon corresponding to the input score list. The area of

U (i.e. the number of squares it contains) can be 8(n 3), since its height can be

8(n 2) (for example, the area of an upset polygon of a a regular tournament is

(n -1)n(n + 1)) 2

12
. The first step we perform is to "compress" U to get an O(n)

representation.

Let l 1 <l2 < · · · <lm be the sorted list of values ofthe upset sequence u(li is

the i'th smallest u value). The i'th level of U is the sub-polygon with y

coordinates between li _1 + 1 and li (where l 0 = 0). It is easy to see that each level

is a collection of rectangles. In other words, for every column j and level r, squares

in j appear either in all the heights of r or in none of them. We can, thus, talk

about "slices at level r". We represent U by a zero-one matrix, LEVEL, where

LEVEL[r J] = 1 if and only if ui 2: lr. For a complete description we also keep a vec

tor HEIGHT, where HEIGHT[r] is the height of the highest slice in level r.

LEVEL can be computed using 0 (n 2) processors, each computing one entry in con

stant time.

We now list the steps of the computation. In each step a matrix or vector is

computed, and in the final step a processor is assigned to each slice and 2-

partitions it. We start by listing the matrices and vectors computed and then

describe in detail how each step is implemented.

A vector TOP _LEVEL

TOP_LEVEL[k] is the maximum level, r, such that LEVEL[r,k]=1 (i.e. the

highest level of column k).

A matrix ENDPOINT.

If there is a slice [ij] m level r, then ENDPOINT[rJ]=i and

ENDPOINT[r ,i] = j. If no slice begins or ends at column j in level r then

ENDPOINT[r J] = <P.

Matrices TOP and BOTTOM.

TOP[ij] is the top level in which slice [ij] appears. BOTTOM[ij] is the bot

tom level in which slice [i J] appears. (Again, an entry is <P if no such slice

exists).

- 10 -

Face domination matrix, FD.

FD[iJ]=1 if face j dominates face t. FD[iJ]=O if face i dominates face j.

FD[iJ]=~ if faces i and j are not opposing. (See section 3 for the definition

of domination.)

Vector TOP _8LICE.

TOP _8LICE[k] is the level of the highest slice that belongs to face k (the face

between columns k -1 and k).

TOP _LEVEL can be computed in constant time by assigning a processor to each

entry of LEVEL to check if it is 1 and the entry above it is 0.

The r'th row of ENDPOINT is computed using O(n/logn) processors in

O(logn) time by a balanced binary tree computation ([MR]). We "plant" a bal

anced complete binary tree with n -1 leaves on level r of the upset polygon. Each

node, N, in the tree represents a range of entries in row r of LEVEL, between

columns l(N) and r(N). A node computes three functions:

propagate(N) - is true iff all the entries represented by N are 1.

starLright(N) - the first column of a slice starting between l(N) and r(N) and end

ing to the right of r(N)- 1.

end_left(N) - the last column of a slice ending between l(N) and r(N) and starting

to the left of l(N) + 1.

An internal node, N, has two children, Nleft and Nright• where l(Nleft)=l(N),

r(N right)= r(N) and r(N left)= l(N right) -1. Then we have:

propagate(N) = propagate(N left) and propagate(N right).

starLright(N) = if propagate(N right) then starLright(N left) else starLright(N right).

end_left(N) = if propagate(Nleft) then end_left(N right) else end_left(Nleft).

The leaves of the tree represent single entries. If an entry is 0 then

propagate= false and end_left and starLright are both ~. If an entry is 1 then

propagate= true and end_left and starLright are both j (for the leaf representing

entry j). A node computes its functions after its children have computed theirs.

Furthermore, N, writes end_left(N right) in ENDPOINT[starLright(N left) and

starLright(N left) in ENDPOINT[end_left(N right). Note that a value may be

overwritten several times. After completing computing the functions for the whole

tree, for each entry, j, if LEVEL[rJ-1]=1 and LEVEL[rJ+1]=1, then

ENDPOINT[rJ] is set to~.

It takes O(logn) time for the node functions to be evaluated for the entire

tree. The whole computation can be done with O(n/logn) processors by a standard

load-balancing trick, as described in [MR]. Proof that this procedure works

correctly is straightforward, and is omitted.

- 11 -

TOP and BOTTOM are computed by having a processor for each entry of

ENDPOINT. Processor [r,i] writes "j" in TOP[iJ] if ENDPOINT[r,i]=j and

ENDPOINT[r+1,i]~j. Similarly for BOTTOM.

FD[iJ]=1 if ENDPOINT[TOP[iJ]+1J]=~ and either

ENDPOINT[TOP[iJ]+1j]~~ or i<j).

For computing TOP _BLICE, let t =ENDPOINT[TOP _LEVEL[k],k]. Then

[k,t] is the highest slice touching face k. If FD[k,t] = 1 then TOP _BLICE[k] is

equal to TOP _LEVEL[k]. Otherwise, it is one level below BOTTOM[k,t] (unless

face k has no other slices than [k ,t], which can be checked by looking up

LEVEL[BOTTOM[k,t] -1,k]).

Finally we partition each of the slices. Let s = [l ,r;h] be a slice. We use FD to

find if s belongs to face l or face r. Then we use TOP _BLICE and HEIGHT to find

the height, h', of the highest slice belonging to that face. Now we can partition s

according to its height, h, and h' as described in theorem 3.1.

We need to show how to assign processors to slices. One way to do it is as fol

lows: a vector, V, is created with one entry for each left face, with the entry being

the length of the face. A vector, P, of partial sums of V is computed. This vector

contains, essentially, an enumeration of the slices. Let a be the total number of

slices of U. We assign logn consecutive slices to each of a/logn processors. Each

processor finds its first slice in time 0 (logn) by a binary search on P. After that,

each of the successive slices is accessed in constant time.

Acknowledgments

Thanks to Richard Karp, Sampath Kannan and Noam Nisan for several help

ful discussions.

References

[B] Berge, C. , "Graphs"

North Holland, 1985.

[BW]Beineke, L.W. and Wilson, R.S. eds. , "Selected Topics in Graph Theory"

Academic Press, 1978.

[CL] Chartrand, G. and Lesniak, L. , "Graphs & Digraphs" 2nd ed.

Wadsworth & Brooks/Cole, 1986.

- 12 -

[FF] Ford, L.R. and Fulkerson, D.R. , "Flows in Networks"

Princeton University Press, 1962.

[M] Moon, J.W. , "Topics on Tournaments"

Holt, Reinhart & Winston, 1968.

[MR]Miller, G.L. and Reif, J.H. , "Parallel Tree Contraction and its Application"

26'th FOCS, pp. 478-489, 1985.

[V] Vishkin, U., "Synchronous Parallel Communication - a Survey"

TR 71, Dept. of Computer Science, Courant Institute, NYU, 1983.

